skip to main content


Search for: All records

Creators/Authors contains: "Banerjee, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The science, technology, engineering and mathematics (STEM) workforce contributes to the U.S. economy by supporting 67% of jobs and 69% of the gross domestic product [1]. Currently, there is an increased demand for engineering and computer science (E/CS) professionals, particularly those from underrepresented (e.g., gender, racial, ethnic) and underserved (socio-economic, geographically isolated) groups who bring diversity of thought and experience to the national E/CS workforce [2]. Correspondingly, educational institutions are called upon to develop capabilities to attract, engage, and retain students from these diverse backgrounds in E/CS programs of study. To encourage and enable diverse students to opt into and persist within E/CS programs of study, there is a critical need to engage students in supportive and enriching opportunities from which to learn and grow. The importance of student engagement for promoting student growth and development has been researched to such an extent that its utility is widely agreed upon [5]. Importantly, it has been shown that both academic and extracurricular aspects of a student’s learning processes are characterized by engagement [6]. High Impact Educational Practices (HIP) provide useful opportunities for deep student engagement and, thus, positively influence student retention and persistence [4]. Kuh [3] identified eleven curricular and extracurricular HIP (i.e., collaborative assignments and projects, common intellectual experiences, eportfolios, first year seminars and experiences, global learning and study abroad, internships, learning communities, senior culminating experiences, service and community-based learning, undergraduate research, and writing intensive courses). In computer science and engineering education fields, however, the extent to which HIP affects persistence and retention has not been fully investigated. This project aims to examine E/CS undergraduate student engagement in HIP and to understand the factors that contribute to positive engagement experiences. 
    more » « less
  2. The formation of biomolecular materials via dynamical interfacial processes such as self-assembly and fusion, for diverse compositions and external conditions, can be efficiently probed using ensemble Molecular Dynamics. However, this approach requires a large number of simulations when investigating a large composition phase space. In addition, there is difficulty in predicting whether each simulation is yielding biomolecular materials with the desired properties or outcomes and how long each simulation will run for. These difficulties can be overcome by rules-based management systems which include intermittent inspection, variable sampling, premature termination and extension of the individual Molecular Dynamics simulations. The automation of such a management system can significantly reduce the overhead of managing large ensembles of Molecular Dynamics simulations. To this end, a high-throughput workflows-based computational framework, Pipeline for Automating Compliance-based Elimination and Extension (PACE2), for biomolecular materials simulations is proposed. The PACE2 framework encompasses Simulation-Analysis Pipelines. Each Pipeline includes temporally separated simulation and analysis tasks. When a Molecular Dynamics simulation completes, an analysis task is triggered which evaluates the Molecular Dynamics trajectory for compliance. Compliant Molecular Dynamics simulations are extended to the next Molecular Dynamics phase with a suitable sample rate to allow additional, detailed analysis. Non-compliant Molecular Dynamics simulations are eliminated, and their computational resources are either reallocated or released. The framework is designed to run on local desktop computers and high performance computing resources. In the future, the framework will be extended to address generalized workflows and investigate other classes of materials. 
    more » « less
  3. null (Ed.)
  4. ABSTRACT

    Widefield surveys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function and reduced shear approximation are $\lesssim 1~{{\ \rm per\ cent}}$ of the total signal. Source clustering effects and baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations between the observed convergence field and the shape noise field at 13σ. The non-Gaussian correlations in the noise field must be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool.

     
    more » « less
  5. In this paper we study the existence, the optimal regularity of solutions, and the regularity of the free boundary near the so-called \emph{regular points} in a thin obstacle problem that arises as the local extension of the obstacle problem for the fractional heat operator $(\partial_t - \Delta_x)^s$ for $s \in (0,1)$. Our regularity estimates are completely local in nature. This aspect is of crucial importance in our forthcoming work on the blowup analysis of the free boundary, including the study of the singular set. Our approach is based on first establishing the boundedness of the time-derivative of the solution. This allows reduction to an elliptic problem at every fixed time level. Using several results from the elliptic theory, including the epiperimetric inequality, we establish the optimal regularity of solutions as well as $H^{1+\gamma,\frac{1+\gamma}{2}}$ regularity of the free boundary near such regular points. 
    more » « less
  6. Table of Contents: Foreword by the CI 2016 Workshop Chairs …………………………………vi Foreword by the CI 2016 Steering Committee ..…………………………..…..viii List of Organizing Committee ………………………….……....x List of Registered Participants .………………………….……..xi Acknowledgement of Sponsors ……………………………..…xiv Hackathon and Workshop Agenda .………………………………..xv Hackathon Summary .………………………….…..xviii Invited talks - abstracts and links to presentations ………………………………..xxi Proceedings: 34 short research papers ……………………………….. 1-135 Papers 1. BAYESIAN MODELS FOR CLIMATE RECONSTRUCTION FROM POLLEN RECORDS ..................................... 1 Lasse Holmström, Liisa Ilvonen, Heikki Seppä, Siim Veski 2. ON INFORMATION CRITERIA FOR DYNAMIC SPATIO-TEMPORAL CLUSTERING ..................................... 5 Ethan D. Schaeffer, Jeremy M. Testa, Yulia R. Gel, Vyacheslav Lyubchich 3. DETECTING MULTIVARIATE BIOSPHERE EXTREMES ..................................... 9 Yanira Guanche García, Erik Rodner, Milan Flach, Sebastian Sippel, Miguel Mahecha, Joachim Denzler 4. SPATIO-TEMPORAL GENERATIVE MODELS FOR RAINFALL OVER INDIA ..................................... 13 Adway Mitra 5. A NONPARAMETRIC COPULA BASED BIAS CORRECTION METHOD FOR STATISTICAL DOWNSCALING ..................................... 17 Yi Li, Adam Ding, Jennifer Dy 6. DETECTING AND PREDICTING BEAUTIFUL SUNSETS USING SOCIAL MEDIA DATA ..................................... 21 Emma Pierson 7. OCEANTEA: EXPLORING OCEAN-DERIVED CLIMATE DATA USING MICROSERVICES ..................................... 25 Arne N. Johanson, Sascha Flögel, Wolf-Christian Dullo, Wilhelm Hasselbring 8. IMPROVED ANALYSIS OF EARTH SYSTEM MODELS AND OBSERVATIONS USING SIMPLE CLIMATE MODELS ..................................... 29 Balu Nadiga, Nathan Urban 9. SYNERGY AND ANALOGY BETWEEN 15 YEARS OF MICROWAVE SST AND ALONG-TRACK SSH ..................................... 33 Pierre Tandeo, Aitor Atencia, Cristina Gonzalez-Haro 10. PREDICTING EXECUTION TIME OF CLIMATE-DRIVEN ECOLOGICAL FORECASTING MODELS ..................................... 37 Scott Farley and John W. Williams 11. SPATIOTEMPORAL ANALYSIS OF SEASONAL PRECIPITATION OVER US USING CO-CLUSTERING ..................................... 41 Mohammad Gorji–Sefidmazgi, Clayton T. Morrison 12. PREDICTION OF EXTREME RAINFALL USING HYBRID CONVOLUTIONAL-LONG SHORT TERM MEMORY NETWORKS ..................................... 45 Sulagna Gope, Sudeshna Sarkar, Pabitra Mitra 13. SPATIOTEMPORAL PATTERN EXTRACTION WITH DATA-DRIVEN KOOPMAN OPERATORS FOR CONVECTIVELY COUPLED EQUATORIAL WAVES ..................................... 49 Joanna Slawinska, Dimitrios Giannakis 14. COVARIANCE STRUCTURE ANALYSIS OF CLIMATE MODEL OUTPUT ..................................... 53 Chintan Dalal, Doug Nychka, Claudia Tebaldi 15. SIMPLE AND EFFICIENT TENSOR REGRESSION FOR SPATIOTEMPORAL FORECASTING ..................................... 57 Rose Yu, Yan Liu 16. TRACKING OF TROPICAL INTRASEASONAL CONVECTIVE ANOMALIES ..................................... 61 Bohar Singh, James L. Kinter 17. ANALYSIS OF AMAZON DROUGHTS USING SUPERVISED KERNEL PRINCIPAL COMPONENT ANALYSIS ..................................... 65 Carlos H. R. Lima, Amir AghaKouchak 18. A BAYESIAN PREDICTIVE ANALYSIS OF DAILY PRECIPITATION DATA ..................................... 69 Sai K. Popuri, Nagaraj K. Neerchal, Amita Mehta 19. INCORPORATING PRIOR KNOWLEDGE IN SPATIO-TEMPORAL NEURAL NETWORK FOR CLIMATIC DATA ..................................... 73 Arthur Pajot, Ali Ziat, Ludovic Denoyer, Patrick Gallinari 20. DIMENSIONALITY-REDUCTION OF CLIMATE DATA USING DEEP AUTOENCODERS ..................................... 77 Juan A. Saenz, Nicholas Lubbers, Nathan M. Urban 21. MAPPING PLANTATION IN INDONESIA ..................................... 81 Xiaowei Jia, Ankush Khandelwal, James Gerber, Kimberly Carlson, Paul West, Vipin Kumar 22. FROM CLIMATE DATA TO A WEIGHTED NETWORK BETWEEN FUNCTIONAL DOMAINS ..................................... 85 Ilias Fountalis, Annalisa Bracco, Bistra Dilkina, Constantine Dovrolis 23. EMPLOYING SOFTWARE ENGINEERING PRINCIPLES TO ENHANCE MANAGEMENT OF CLIMATOLOGICAL DATASETS FOR CORAL REEF ANALYSIS ..................................... 89 Mark Jenne, M.M. Dalkilic, Claudia Johnson 24. Profiler Guided Manual Optimization for Accelerating Cholesky Decomposition on R Environment ..................................... 93 V.B. Ramakrishnaiah, R.P. Kumar, J. Paige, D. Hammerling, D. Nychka 25. GLOBAL MONITORING OF SURFACE WATER EXTENT DYNAMICS USING SATELLITE DATA ..................................... 97 Anuj Karpatne, Ankush Khandelwal and Vipin Kumar 26. TOWARD QUANTIFYING TROPICAL CYCLONE RISK USING DIAGNOSTIC INDICES .................................... 101 Erica M. Staehling and Ryan E. Truchelut 27. OPTIMAL TROPICAL CYCLONE INTENSITY ESTIMATES WITH UNCERTAINTY FROM BEST TRACK DATA .................................... 105 Suz Tolwinski-Ward 28. EXTREME WEATHER PATTERN DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK .................................... 109 Yunjie Liu, Evan Racah, Prabhat, Amir Khosrowshahi, David Lavers, Kenneth Kunkel, Michael Wehner, William Collins 29. INFORMATION TRANSFER ACROSS TEMPORAL SCALES IN ATMOSPHERIC DYNAMICS .................................... 113 Nikola Jajcay and Milan Paluš 30. Identifying precipitation regimes in China using model-based clustering of spatial functional data .................................... 117 Haozhe Zhang, Zhengyuan Zhu, Shuiqing Yin 31. RELATIONAL RECURRENT NEURAL NETWORKS FOR SPATIOTEMPORAL INTERPOLATION FROM MULTI-RESOLUTION CLIMATE DATA .................................... 121 Guangyu Li, Yan Liu 32. OBJECTIVE SELECTION OF ENSEMBLE BOUNDARY CONDITIONS FOR CLIMATE DOWNSCALING .................................... 124 Andrew Rhines, Naomi Goldenson 33. LONG-LEAD PREDICTION OF EXTREME PRECIPITATION CLUSTER VIA A SPATIO-TEMPORAL CONVOLUTIONAL NEURAL NETWORK .................................... 128 Yong Zhuang, Wei Ding 34. MULTIPLE INSTANCE LEARNING FOR BURNED AREA MAPPING USING MULTI –TEMPORAL REFLECTANCE DATA .................................... 132 Guruprasad Nayak, Varun Mithal, Vipin Kumar 
    more » « less